Truncated exponential extension distribution: Relative loss for various entropy measures using the truncated exponential extension distribution
Description
Compute the relative information loss of the Shannon, Rényi, Havrda and Charvat, and Arimoto entropies of the truncated exponential extension distribution.
The functions rlse_nh, rlre_nh, rlhce_nh, and rlae_nh provide the relative information loss based on the Shannon entropy, Rényi entropy, Havrda and Charvat entropy, and Arimoto entropy, respectively, depending on the selected parametric values of the truncated exponential extension distribution, \(p\) and \(\delta\).
Arguments
alpha
The strictly positive parameter of the exponential extension distribution (\(\alpha > 0\)).
beta
The strictly positive parameter of the exponential extension distribution (\(\beta > 0\)).
p
The truncation time \((p>0)\).
delta
The strictly positive parameter (\(\delta > 0\)) and (\(\delta \ne 1\)).
Author
Muhammad Imran, Christophe Chesneau and Farrukh Jamal
R implementation and documentation: Muhammad Imran <imranshakoor84@yahoo.com>, Christophe Chesneau <christophe.chesneau@unicaen.fr> and Farrukh Jamal farrukh.jamal@iub.edu.pk.
References
Awad, A. M., & Alawneh, A. J. (1987). Application of entropy to a life-time model. IMA Journal of Mathematical Control and Information, 4(2), 143-148.
Nadarajah, S., & Haghighi, F. (2011). An extension of the exponential distribution. Statistics, 45(6), 543-558.